A Novel Training Algorithm for HMMs with Partial and Noisy Access to the States
نویسندگان
چکیده
This paper proposes a new estimation algorithm for the parameters of an HMM as to best account for the observed data. In this model, in addition to the observation sequence, we have partial and noisy access to the hidden state sequence as side information. This access can be seen as “partial labeling” of the hidden states. Furthermore, we model possible mislabeling in the side information in a joint framework and derive the corresponding EM updates accordingly. In our simulations, we observe that using this side information, we considerably improve the state recognition performance, up to 70%, with respect to the “achievable margin” defined by the baseline algorithms. Moreover, our algorithm is shown to be robust to the training conditions.
منابع مشابه
A novel and robust parameter training approach for HMMs under noisy and partial access to states
This paper proposes a new estimation algorithm for the parameters of an HMM as to best account for the observed data. In this model, in addition to the observation sequence, we have partial and noisy access to the hidden state sequence as side information. This access can be seen as “partial labeling” of the hidden states. Furthermore, we model possible mislabeling in the side information in a ...
متن کاملA Novel Algorithm to Find Maximum Power Point for Solar Systems under Partial Shading
In this paper, a new two-stage control algorithm to reach the maximum power point in photovoltaic (PV) systems under partially shaded conditions is presented. This algorithm tracks the maximum power point without any need to measure the open circuit voltage, short circuit current and making use of any extra switches. To achieve maximum power performance, the method firstly selects the relevant ...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملThe cascade HMM/ANN hybrid: A new framework for discriminative training in speech recognition
In this paper, a new formulation for discriminative training of HMMs is presented. This formulation uses a properly trained MLP in a simple interconnection with HMMs called “Cascade HMM/ANN Hybrid”. Our training algorithm has simple realization in comparison with other discriminative training for HMMs such as MDI and MMI. We also present a rigid mathematical proof of its convergence. We found t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1203.4597 شماره
صفحات -
تاریخ انتشار 2012